AI 算法让图片动起来,深情演唱 Unravel
项目地址:
https://github.com/anandpawara/Real_Time_Image_Animation
实验环境:
https://colab.research.google.com/
Step1: Clone Repo
!git clone https://github.com/anandpawara/Real_Time_Image_Animation.git %cd Real_Time_Image_Animation
Step2: Install required modules
在安装前,需要修改requirements.txt
文件,因为我们实验的环境是linux,而requirements.txt
中下载了一些windows的库
删除requirements.txt
以下两行
pywin32==227 pywinpty==0.5.7
然后执行以下代码
!pip install -r requirements.txt !pip install torch===1.0.0 torchvision===0.2.1 -f https://download.pytorch.org/whl/cu100/torch_stable.html
Step3: Modify image_animation.py
这个项目只能处理图像,不能保留音频。所以我们需要先将音频保存,再将处理好的视频和音频进行合成
修改image_animation.py
文件
import imageio import torch from tqdm import tqdm from animate import normalize_kp from demo import load_checkpoints import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from skimage import img_as_ubyte from skimage.transform import resize import cv2 import os import argparse import subprocess import os from PIL import Image def video2mp3(file_name): outfile_name = file_name.split('.')[0] + '.mp3' cmd = 'ffmpeg -i ' + file_name + ' -f mp3 ' + outfile_name print(cmd) subprocess.call(cmd, shell=True) def video_add_mp3(file_name, mp3_file): outfile_name = file_name.split('.')[0] + '-f.mp4' subprocess.call('ffmpeg -i ' + file_name + ' -i ' + mp3_file + ' -strict -2 -f mp4 ' + outfile_name, shell=True) ap = argparse.ArgumentParser() ap.add_argument("-i", "--input_image", required=True,help="Path to image to animate") ap.add_argument("-c", "--checkpoint", required=True,help="Path to checkpoint") ap.add_argument("-v","--input_video", required=False, help="Path to video input") args = vars(ap.parse_args()) print("[INFO] loading source image and checkpoint...") source_path = args['input_image'] checkpoint_path = args['checkpoint'] if args['input_video']: video_path = args['input_video'] else: video_path = None source_image = imageio.imread(source_path) source_image = resize(source_image,(256,256))[..., :3] generator, kp_detector = load_checkpoints(config_path='config/vox-256.yaml', checkpoint_path=checkpoint_path) if not os.path.exists('output'): os.mkdir('output') relative=True adapt_movement_scale=True cpu=False if video_path: cap = cv2.VideoCapture(video_path) print("[INFO] Loading video from the given path") else: cap = cv2.VideoCapture(0) print("[INFO] Initializing front camera...") fps = cap.get(cv2.CAP_PROP_FPS) size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))) video2mp3(file_name = video_path) fourcc = cv2.VideoWriter_fourcc('M','P','E','G') #out1 = cv2.VideoWriter('output/test.avi', fourcc, fps, (256*3 , 256), True) out1 = cv2.VideoWriter('output/test.mp4', fourcc, fps, size, True) cv2_source = cv2.cvtColor(source_image.astype('float32'),cv2.COLOR_BGR2RGB) with torch.no_grad() : predictions = [] source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) if not cpu: source = source.cuda() kp_source = kp_detector(source) count = 0 while(True): ret, frame = cap.read() frame = cv2.flip(frame,1) if ret == True: if not video_path: x = 143 y = 87 w = 322 h = 322 frame = frame[y:y+h,x:x+w] frame1 = resize(frame,(256,256))[..., :3] if count == 0: source_image1 = frame1 source1 = torch.tensor(source_image1[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) kp_driving_initial = kp_detector(source1) frame_test = torch.tensor(frame1[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2) driving_frame = frame_test if not cpu: driving_frame = driving_frame.cuda() kp_driving = kp_detector(driving_frame) kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving, kp_driving_initial=kp_driving_initial, use_relative_movement=relative, use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale) out = generator(source, kp_source=kp_source, kp_driving=kp_norm) predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0]) im = np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0] im = cv2.cvtColor(im,cv2.COLOR_RGB2BGR) #joinedFrame = np.concatenate((cv2_source,im,frame1),axis=1) #joinedFrame = np.concatenate((cv2_source,im,frame1),axis=1) #cv2.imshow('Test',joinedFrame) #out1.write(img_as_ubyte(joinedFrame)) out1.write(img_as_ubyte(im)) count += 1 # if cv2.waitKey(20) & 0xFF == ord('q'): # break else: break cap.release() out1.release() cv2.destroyAllWindows() video_add_mp3(file_name='output/test.mp4', mp3_file=video_path.split('.')[0] + '.mp3')
Step 4: Download cascade file ,weights and model and save in folder named extract
下载算法需要的模型和权重文件
!gdown --id 1wCzJP1XJNB04vEORZvPjNz6drkXm5AUK !unzip checkpoints.zip
视频以及图片素材下载链接:
https://pan.baidu.com/s/1aur-vfTSJE9ix9afIuZLRQ
提取码:p3so将视频素材1.mp4
上传到Real_Time_Image_Animation
目录下
将图片素材pdd.png
上传到Real_Time_Image_Animation/Inputs
目录下
Step5: Run the project
命令模板:
python image_animation.py -i path_to_input_file -c path_to_checkpoint -v path_to_video_file
path_to_input_file
是输入的模板图片path_to_checkpoint
是权重文件path_to_video_file
是输入的视频文件
具体来说,执行如下命令即可
!python image_animation.py -i Inputs/pdd.png -c vox-cpk.pth.tar -v 1.mp4
最后生成的视频会保存在Real_Time_Image_Animation/output
目录下,名为test-f.mp4
以后可以考虑给个 GIF 或者视频、能够引起其他人的兴趣