NLP 中的对抗训练(附 PyTorch 实现)

对抗样本的基本概念

要认识对抗训练,首先要了解"对抗样本",它首先出现在论文Intriguing properties of neural networks之中。简单来说,它是指对于人类来说"看起来"几乎一样,但对于模型来说预测结果却完全不一样的样本,比如下面的经典例子(一只熊猫加了点扰动就被识别成了长臂猿)

那么,什么样的样本才是好的对抗样本呢?对抗样本一般需要具有两个特点:

  1. 相对原始输入,所添加的扰动是微小的
  2. 能使模型犯错

对抗训练的基本概念

GAN之父lan Goodfellow在15年的ICLR中第一次提出了对抗训练的概念,简言之,就是在原始输入样本x上加一个扰动\Delta x,得到对抗样本之后,用其进行训练。也就是说,问题可以被抽象成这样一个模型:

\begin{equation} \max_{\theta} P(y|x+\Delta x;\theta) \end{equation}

其中,y为ground truth,\theta为模型参数。那扰动\Delta x如何计算呢?Goodfellow认为:神经网络由于其线性的特点,很容易受到线性扰动的攻击

This linear behavior suggests that cheap, analytical perturbations of a linear model should also damage neural networks

于是,他提出了Fast Gradinet Sign Method(FGSM),来计算输入样本的扰动。扰动可以被定义为:

\Delta x = \epsilon \cdot \text{sgn}(\nabla_x L(x, y;\theta))

其中,\text{sgn}为符号函数,L为损失函数(很多地方也用J来表示)。Goodfellow发现,\epsilon=0.25时,这个扰动能给一个单层分类器造成99.9%的错误率。看似这个扰动的发现有点拍脑门,但仔细想想,其实这个扰动计算的思想可以理解为:将输入样本想着损失上升的方向再进一步,得到的对抗样本就能造成更大的损失,提高模型的错误率

为了帮助读者理解上面一段话的含义,我们首先回顾一下梯度下降:在神经网络中,为了使得降低模型的损失,我们有这么一个简单的式子:

\text{new_weights = old_weights - lr * gradients}

如果要我指出其中最重要的部分,那必然是减号。这个减号使得无论当前梯度gradients是正还是负,最终new_weights的前进方向必然是使得loss下降的方向。那么反过来,如果将减号改为加号,并且将weights改为x,对抗训练中使得损失上升的思想就出来了

x = x + \Delta x

上图中,我们看到两个箭头代表了两种不同的梯度调整策略。左侧的方程是训练神经网络最常见方程,它朝着梯度下降、损失下降的方向前进。右侧的方程则不是这样,它朝着梯度上升、损失上升的方向前进

实际上公式中的\text{sgn}函数作用仅仅只是为了防止\nabla xL(x,y;\theta)过大所做的缩放,除了\text{sgn}函数以外,还有一种常见的方式是:

\Delta x = \epsilon·\frac{\nabla_x L(x,y;\theta)}{||\nabla_xL(x,y;\theta)||}

最后,Goodfellow还总结了对抗训练的两个作用:

  1. 提高模型应对恶意对抗样本时的鲁棒性
  2. 作为一种regularization,减少overfitting,提高泛化能力

Min-Max公式

Madry在2018年的ICLR论文Towards Deep Learning Models Resistant to Adversarial Attacks中总结了之前的工作。总的来说,对抗训练可以统一写成如下格式:

\min_{\theta}\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[\max_{\Delta x\in\Omega}L(x+\Delta x, y;\theta)\right]

其中\mathcal{D}代表数据集,x代表输入,y代表标签,\theta是模型参数,L(x,y;\theta)是单个样本的loss,\Delta x是扰动,\Omega是扰动空间。这个式子可以分步理解如下:

  1. x里注入扰动\Delta x\Delta x的目标是让L(x+\Delta x, y;\theta)越大越好,也就是说尽可能让现有模型的预测出错
  2. 当然\Delta x也不是无约束的,它不能太大,否则达不到"看起来几乎一样"的效果,所以\Delta x要满足一定的约束,常规的约束是||\Delta x||\leq \epsilon,其中\epsilon是一个常数
  3. 每个样本都构造出对抗样本x+\Delta x之后,用(x+\Delta,y)作为数据去最小化loss来更新参数\theta(梯度下降)
  4. 反复交替执行1、2、3步

从CV到NLP

对于CV领域的任务,上述对抗训练的流程可以顺利执行下来,因为图像可以视为普通的连续实数向量,\Delta x也是一个实数向量,因此x+\Delta x依然可以是有意义的图像。但NLP不一样,NLP的输入是文本,它本质上是one-hot向量,而两个不同的one-hot向量,其欧式距离恒为\sqrt{2},因此对于理论上不存在什么"小扰动"

一个自然的想法是像论文Adversarial Training Methods for Semi-Supervised Text Classification一样,将扰动加到Embedding层

Because the set of high-dimensional one-hot vectors does not admit infinitesimal perturbation, we define the perturbation on continuous word embeddings instead of discrete word inputs.

这个思路在操作上没有问题,但问题是,扰动后的Embedding向量不一定能匹配上原来的Embedding向量表,这样一来对Embedding层的扰动就无法对应上真实的文本输入,这就不是真正意义上的对抗样本了,因为对抗样本依然能对应一个合理的原始输入

那么,在Embedding层做对抗扰动还有没有意义呢?有!实验结果显示,在很多任务中,在Embedding层进行对抗扰动能有效提高模型的性能

Fast Gradient Method(FGM)

上面提到,Goodfellow在15年的ICLR中提出了Fast Gradient Sign Method(FGSM),随后,在17年的ICLR中,Goodfellow对FGSM中计算扰动的部分做了一点简单的修改。假设输入文本序列的Embedding vectors [v_1,v_2,...,v_T]x,Embedding的扰动为

\begin{align*} \Delta x &= \epsilon · \frac{g}{||g||_2}\\ g &= \nabla_x L(x,y;\theta) \end{align*}

实际上就是取消了符号函数,用二范式做了一个scale,需要注意的是:这里的norm计算的是,每个样本的输入序列中出现过的词组成的矩阵的梯度norm。原作者提供了一个TensorFlow的实现,在他的实现中,公式里的x是Embedding后的结果(batch_size, seq_len, hid_dim),对其梯度g的后面两维计算norm,得到的是一个维度为(batch_size, 1, 1)的向量||g||_2。为了实现插件式的调用,笔者将一个batch抽象成一个样本,一个batch统一用一个norm,其实norm本来也只是一个缩放的作用,影响不大。实现如下:

class FGM():
    def __init__(self, model):
        self.model = model
        self.backup = {}

    def attack(self, epsilon=1., emb_name='emb'):
        # emb_name这个参数要换成你模型中embedding的参数名
        # 例如,self.emb = nn.Embedding(5000, 100)
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name:
                self.backup[name] = param.data.clone()
                norm = torch.norm(param.grad) # 默认为2范数
                if norm != 0:
                    r_at = epsilon * param.grad / norm
                    param.data.add_(r_at)

    def restore(self, emb_name='emb'):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name: 
                assert name in self.backup
                param.data = self.backup[name]
        self.backup = {}

需要使用对抗训练的时候,只需要添加五行代码:

# 初始化
fgm = FGM(model)
for batch_input, batch_label in data:
  # 正常训练
  loss = model(batch_input, batch_label)
  loss.backward() # 反向传播,得到正常的grad
  # 对抗训练
  fgm.attack() # embedding被修改了
  # optimizer.zero_grad() # 如果不想累加梯度,就把这里的注释取消
  loss_sum = model(batch_input, batch_label)
  loss_sum.backward() # 反向传播,在正常的grad基础上,累加对抗训练的梯度
  fgm.restore() # 恢复Embedding的参数
  # 梯度下降,更新参数
  optimizer.step()
  optimizer.zero_grad()

Projected Gradient Descent(PGD)

FGM的思路是梯度上升,本质上来说没有什么问题,但是FGM简单粗暴的"一步到位"是不是有可能并不能走到约束内的最优点呢?当然是有可能的。于是,一个新的想法诞生了,Madry在18年的ICLR中提出了Projected Gradient Descent(PGD)方法,简单的说,就是"小步走,多走几步",如果走出了扰动半径为\epsilon的空间,就重新映射回"球面"上,以保证扰动不要过大:

\begin{align*} x_{t+1}&=\prod_{x+S}(x_t+\alpha\frac{g(x_t)}{||g(x_t)||_2})\\ g(x_t)&=\nabla_xL(x_t,y;\theta) \end{align*}

其中S=\{r\in \mathbb{R}^d:||r||_2\leq \epsilon\}为扰动的约束空间,\alpha为小步的步长

由于PGD理论和代码比较复杂,因此下面先给出伪代码方便理解,然后再给出代码

对于每个x:
  1.计算x的前向loss,反向传播得到梯度并备份
  对于每步t:
    2.根据Embedding矩阵的梯度计算出r,并加到当前Embedding上,相当于x+r(超出范围则投影回epsilon内)
    3.t不是最后一步: 将梯度归0,根据(1)x+r计算前后向并得到梯度
    4.t是最后一步: 恢复(1)的梯度,计算最后的x+r并将梯度累加到(1)
  5.Embedding恢复为(1)时的值
  6.根据(4)的梯度对参数进行更新

可以看到,在循环中r是逐渐累加的,要注意的是最后更新参数只使用最后一个x+r算出来的梯度

class PGD():
    def __init__(self, model):
        self.model = model
        self.emb_backup = {}
        self.grad_backup = {}

    def attack(self, epsilon=1., alpha=0.3, emb_name='emb', is_first_attack=False):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name:
                if is_first_attack:
                    self.emb_backup[name] = param.data.clone()
                norm = torch.norm(param.grad)
                if norm != 0:
                    r_at = alpha * param.grad / norm
                    param.data.add_(r_at)
                    param.data = self.project(name, param.data, epsilon)

    def restore(self, emb_name='emb'):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name: 
                assert name in self.emb_backup
                param.data = self.emb_backup[name]
        self.emb_backup = {}
      
    def project(self, param_name, param_data, epsilon):
        r = param_data - self.emb_backup[param_name]
        if torch.norm(r) > epsilon:
            r = epsilon * r / torch.norm(r)
        return self.emb_backup[param_name] + r
      
    def backup_grad(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                self.grad_backup[name] = param.grad.clone()
  
    def restore_grad(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad:
                param.grad = self.grad_backup[name]

使用的时候要麻烦一点:

pgd = PGD(model)
K = 3
for batch_input, batch_label in data:
    # 正常训练
    loss = model(batch_input, batch_label)
    loss.backward() # 反向传播,得到正常的grad
    pgd.backup_grad() # 保存正常的grad
    # 对抗训练
    for t in range(K):
        pgd.attack(is_first_attack=(t==0)) # 在embedding上添加对抗扰动, first attack时备份param.data
        if t != K-1:
            optimizer.zero_grad()
        else:
            pgd.restore_grad() # 恢复正常的grad
        loss_sum = model(batch_input, batch_label)
        loss_sum.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
    pgd.restore() # 恢复embedding参数
    # 梯度下降,更新参数
    optimizer.step()
    optimizer.zero_grad()

Virtual Adversarial Training

除了监督任务,对抗训练还可以用在半监督任务中,尤其对于NLP任务来说,很多时候我们拥有大量的未标注文本,那么就可以参考Distributional Smoothing with Virtual Adversarial Training进行半监督训练

首先,抽取一个随机标准正态扰动(d\sim \mathcal{N}(0, 1) \in \mathbb{R}^d),加到Embedding上,并用KL散度计算梯度:

\begin{align*} g &= \nabla_{x'} D_{KL}(p(·\mid x;\theta)||p(·\mid x';\theta))\\ x' &= x + \xi d \end{align*}

然后,用得到的梯度,计算对抗扰动,并进行对抗训练:

\begin{align} \min_\theta & D_{KL}(p(\cdot|x;\theta)||p(\cdot|x^*;\theta)) \\\\ x^* &= x+\epsilon \frac{g}{||g||_2} \end{align}

实现起来有很多细节,并且笔者对于NLP的半监督任务了解并不多,因此这里就不给出实现了

实验对照

为了说明对抗训练的作用,网上有位大佬选了四个GLUE中的任务进行了对照试验,实验代码使用的Huggingface的transformers/examples/run_glue.py,超参都是默认的,对抗训练用的也是相同的超参

任务 Metrics BERT-Base FGM PGD
MRPC Accuracy 83.6 86.8 85.8
CoLA Matthew's corr 56.0 56.0 56.8
STS-B Person/Spearmean corr 89.3/88.8 89.3/88.8 89.3/88.8
RTE Accuracy 64.3 66.8 64.6

可以看出,对抗训练还是有效的,在MRPC和RTE任务上甚至可以提高三四个百分点。不过,根据我们使用的经验来看,是否有效有时也取决于数据集

为什么对抗训练有效?

Adversarial Training 能够提升 Word Embedding 质量的一个原因是:

有些词与比如(good 和 bad),其在语句中 Grammatical Role 是相近的,我理解为词性相同(都是形容词),并且周围一并出现的词语也是相近的,比如我们经常用来修饰天气或者一天的情况(The weather is good/bad; It's a good/bad day),这些词的 Word Embedding 是非常相近的。文章中用 Good 和 Bad 作为例子,找出了其最接近的 10 个词:

可以发现在 Baseline 和 Random 的情况下, good 和 bad 出现在了彼此的邻近词中,而喂给模型经过扰动之后的 X-adv 之后,也就是 Adversarial 这一列,这种现象就没有出现,事实上, good 掉到了 bad 接近程度排第 36 的位置

我们可以猜测,在 Word Embedding 上添加的 Perturbation 很可能会导致原来的good变成bad,导致分类错误,计算的 Adversarial Loss 很大,而计算 Adversarial Loss 的部分是不参与梯度计算的,也就是说,模型(LSTM 和最后的 Dense Layer)的 Weight 和 Bias 的改变并不会影响 Adversarial Loss,模型只能通过改变 Word Embedding Weight 来努力降低它,进而如文章所说:

Adversarial training ensures that the meaning of a sentence cannot be inverted via a small change, so these words with similar grammatical role but different meaning become separated.

这些含义不同而语言结构角色类似的词能够通过这种 Adversarial Training 的方法而被分离开,从而提升了 Word Embedding 的质量,帮助模型取得了非常好的表现

梯度惩罚

这一部分,我们从另一个视角对上述结果进行分析,从而推出对抗训练的另一种方法,并且得到一种关于对抗训练更直观的几何理解

假设已经得到对抗扰动\Delta x,那么我们在更新\theta时,考虑对L(x+\Delta x,y;\theta)的泰勒展开:

\begin{align*} &\min_{\theta}\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(x+\Delta x, y;\theta)\right]\\ \approx&\, \min_{\theta}\mathbb{E}_{(x,y)\sim\mathcal{D}}\left[L(x, y;\theta)+\langle\nabla_x L(x, y;\theta), \Delta x\rangle\right] \end{align*}

其中,\langle x,y \rangle = x·y = x^Ty

对应\theta的梯度为

\nabla_{\theta} L(x,y;\theta)+\langle \nabla_{\theta}\nabla{x}L(x,y;\theta), \Delta x\rangle

带入\Delta x = \epsilon \nabla_x L(x,y;\theta),得到

\begin{aligned}&\nabla_{\theta}L(x, y;\theta)+\epsilon\langle\nabla_{\theta}\nabla_x L(x, y;\theta), \nabla_x L(x, y;\theta)\rangle\\ =&\,\nabla_{\theta}\left(L(x, y;\theta)+\frac{1}{2}\epsilon\left\Vert\nabla_x L(x, y;\theta)\right\Vert^2\right) \end{aligned}
\begin{align*} &\langle \frac{\partial ^2L}{\partial x \partial \theta}, \frac{\partial L}{\partial x}\rangle\\ =&\frac{\partial (\frac{1}{2}(\frac{\partial L}{\partial x})^2)}{\partial \theta}\\ =&\nabla_\theta(\frac{1}{2}||\nabla_xL(x,y;\theta)||^2) \end{align*}

这个结果表示,对输入样本施加\epsilon \nabla_x L(x,y;\theta)的对抗扰动,一定程度上等价于往loss里边加入**"梯度惩罚"**

\frac{1}{2}\epsilon ||\nabla_x L(x,y;\theta)||^2

如果对抗扰动\Delta x = \epsilon \frac{\nabla_x L(x,y;\theta)}{||\nabla_x L(x,y;\theta||},那么对应的梯度惩罚项则是\epsilon ||\nabla_x L(x,y;\theta)||

总结

这篇博客梳理了NLP对抗训练发展的来龙去脉,介绍了对抗训练的数学定义,并对于两种经典的对抗训练方法,提供了插件式的实现,做了简单的实验对照。由于笔者接触对抗训练的时间也并不长,如果文中有理解偏差的地方,希望读者不吝指出。另外还有一些对抗训练算法,读者有兴趣可以查看一文搞懂NLP中的对抗训练以及对抗训练的理解,以及FGM、PGD和FreeLB的详细介绍这两篇文章

References